
Best Practice for
Programming in R

ARUSHI GARG

FEBRUARY 2023

WWW . A R U S H I G A R G . C OM

A R U S H I G A R G 1 4@GMA I L . C OM

TW I T T E R . C OM / A R U S H I G R G

M A S T O D O N : @ A R U S H I G @ S C I E N C E S . S O C I A L

1

http://www.arushigarg.com/
mailto:arushigarg14@gmail.com
https://twitter.com/arushigrg

Setting expectations
qPrimarily aimed at academics, students or those starting out to code.

If any of you has, however, briefly been exposed to a more formal way of programming, due to
work in industry or package development, it might be that many of the major points here are
already known to you and redundant

q Major focus on simple quick things that you can do to drastically change the way your code
looks and improve use, sharing and readability

q Primary aim is to improve readability of your code. This is not meant to teach how to code
better J

q R, particularly R Studio perspective. Principles can transfer to other languages, but practices
would need to be modified – in some cases – drastically

2

Invitation
q Open up a piece of your own code as you go through this document.

q As we go through examples of what to do and what not to do, try to see what you could have
done differently in your own code

q If you have questions, feel free to interrupt.

3

My Background
PhD candidate in Psycho- / Neurolinguistics

Institute of
Cognitive Science

Master in Cognitive Science

Software Developer (SAP ABAP)

4

So What!!?

5

So What!!?

How I felt about coding practices in academic
research when I first moved here from industry

6

Software Industry & Coding Practices
q Company or project standards
q Code formatting (including things as specific as indentation)
q Naming conventions
q Modularity conventions
q Version control
q Thorough documentation

q Technical specifications
qFunctional specifications

q Self-reviews; Self-tests
q Peer-reviews (not like in academia, but review of the code)
q Rigourous testing at different levels; technical as well as functional testing

7

Academia & Coding Practices
q Company or project standards
q Code formatting (including things as specific as indentation)
q Naming conventions
q Modularity conventions
q Version control
q Thorough documentation

q Technical specifications
qFunctional specifications

q Self-reviews; Self-tests
q Peer-reviews (not like in academia, but review of the code)
q Rigourous testing at different levels; technical as well as functional testing

8

Well, we are doing just
fine without any
standards!
OR ARE WE???!!!

9

Needs of the software industry ≠ Needs
of academia
q Different landscape
q Larger teams

q You might be working on a piece of code today that someone else will work on tomorrow.
q During the testing phase, a completely different team might be responsible for debugging and fixing it.
q During maintenance and support, another company or project team might handle it

qDifferent aim
q Software is a product or a service

q If it is broken – the customer would leave

q Product needs to be used many times in different scenarios

10

BUT!
Or “HOWEVER!” If we are being fancy

11

Academia does have some needs
q We need to make sure our results are reliable (or “Crap! I hope I don’t have to retract my
paper”)

q Reproducibility

q Efficiency of coding

q Sharing of scripts (or “I now need to spend 2 days to fix my script so that I can send it to her”)

q Open Science

q “What does this code from last year do!”

12

Academia actually has quite many needs
q“I don't know what the difference between "Study1_analysis", "Study1_analysis_final",
Study1_analysis_adjusted is “ or “ which was the script with the right results!”

q “I don’t understand the logic I used behind this code block” or “Why did I multiply x by 2
here?”

q Error resolution & Debugging

q Reusability

q Uniformity & Consistency

q Automatisation

13

Needs of the software you are using
Needs of R
≠ Needs of JAVA
≠ Needs of Neurobs Presentation
≠ Needs of ABAP
≠ Needs of MATLAB
≠ Needs of Python

14

Our focus is on R and RStudio
q Similar principles might apply to Python (but not the same)

q But other languages and software might differ radically

15

Preview of what is coming up
q Clearing workspace

q RStudio project functionality

q Code headers, code folding, section headers

q Library declarations

q Version Control

q Commenting practices

q Naming conventions

q Hard coding vs. parameter coding

q Reducing visual chaos

q Modularity

q User-defined functions

q Bonus mention: pipe functions

16

So, what can we do?
LET ’S BEGIN WITH THE SIMPLER, FASTER CHANGES WE CAN MAKE

17

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
q Stop doing this!

18

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
q Stop doing this!

qInstead use:
q R Studio project functionality
q New Session

19

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
q Stop doing this!

20

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
q Stop doing this!

This seems like an extreme idea, I get it!

I even got back comments after my first
presentation from a couple of people who
highly resisted the idea and could not believe
that I would propose running a script without
first making sure that the workspace is not
free of conflicting variables.

21

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
q Stop doing this!

How can someone recommend
running a script in workspace
that’s not empty?

That’s not what I am recommend. You need
a clean workspace. You just get to it in a
different way!

22

Stop clearing the workspace (rm(list =ls())
at the beginning of your code

23

Stop clearing the workspace (rm(list =ls())
at the beginning of your code
Let’s say that I am working on a
complicated project with a
complicated piece of code and I
have all of these variables in the
workspace

I take a break or something urgent
comes up and my workspace is left
like this

Original workspace

24

Stop clearing the workspace at the
beginning of your code
In the meanwhile, a colleague has shared a
script with me that I was waiting for, which
solves a problem I am facing in another
project
In the spirit of charging forward and excited
about finally having a solution to my
problem, I run the script, which looks like

Original workspace

25

Stop clearing the workspace at the
beginning of your code

26

Stop clearing the workspace at the
beginning of your code

All my precious variables, values and dataframe are
gone! Because of that line

Original workspace

Original workspace

27

Stop clearing the workspace at the
beginning of your code
Instead, use R Studio’s project functionality

28

Use of RStudio project functionality
q One of the most impactful changes

29

Use of RStudio project functionality
q One of the most impactful changes

30

Use of RStudio project functionality
q One of the most impactful changes

q Data is in the same folder as the code

Data Code

31

Use of RStudio project functionality
q One of the most impactful changes

q Data is in the same folder as the code

q Easily shareable. Allows sharing and linking
of data and code simultaneously

q here:here()
q C:/Users/Public/CSAnalysisProject

Data Code

32

Use of RStudio project functionality
q One of the most impactful changes

q Data is in the same folder as the code

q Easily shareable. Allows sharing and linking
of data and code simultaneously

q here:here()
q C:/Users/Public/CSAnalysisProject
q points to the directory which has the .Rproj file Data Code

33

Use of RStudio project functionality
q One of the most impactful changes

q Data is in the same folder as the code

q Easily shareable. Allows sharing and linking
of data and code simultaneously

q here:here()
q C:/Users/Public/CSAnalysisProject
q points to the directory which has the .Rproj file Data Code

34

Use of RStudio project functionality
q One of the most impactful changes

q Data is in the same folder as the code

q Easily shareable. Allows sharing and linking
of data and code simultaneously

q here:here()
q C:/Users/Public/CSAnalysisProject
q points to the directory which has the .Rproj file
qThus, the folder path specified in the code does

not need to be changed when running the code
in someone else’s computer which has a
different directory or folder organisation.

Data Code

35

Use of RStudio project functionality

36

Use of RStudio project functionality
Same scenario: complicated project,
important variables in the workplace;

a colleague sends code related to a different
project that I was waiting on eagerly.
However, this colleague is smart and uses
project functionality

Original workspace

37

Use of RStudio project functionality
However, this colleague is smart and use
project functionality. They instruct me to use
projects. So, I do it

Original workspace

When I open a project, I am
prompted to save the current
workspace

Saving this workspace image
prevents loss of data!!!

38

Use of RStudio project functionality
Choose the project and open the directory. I
run a couple of things and the project
workspace is now loaded.

Project workspace

Saved workspace is
loaded

39

Use of RStudio project functionality
Now if I need to switch back to the original
workspace, I close project

Project workspace

I am now prompted to
save the project
workspace

Saving the project workspace image prevents loss
of data from the project analysis and can be helpful
in pausing analyses midway

40

Use of RStudio project functionality
And I can get back to my
original workspace without
any loss of data!!!

Original workspace

41

Aside: advantages of here package
q getwd() not optimal: It returns different results depending on file types and directory
structures
q path needs to be rewritten according to directory structure or different OS

q relative paths are not useful if your current file is a sub-folder in the main project folder – and
– you want to reference a file in another sub folder

q folder path specified in the code does not need to be changed when running the code in
someone else’s computer which has a different directory name or even different OS

q creates file paths corresponding to requirement of current OS

q more details: https://malco.io/2018/11/05/why-should-i-use-the-here-package-when-i-m-
already-using-projects/

42

https://malco.io/2018/11/05/why-should-i-use-the-here-package-when-i-m-already-using-projects/
https://malco.io/2018/11/05/why-should-i-use-the-here-package-when-i-m-already-using-projects/

Code Headers
• Utilise code folding

features!

q Useful for identifying purpose of script.

q If script is shared with someone, it can be informative with regards to the
original author and project

43

Code Folding

q R Studio feature

q A comment line that ends in 4 “-”, “=“ or “#”

q Find more info on Rstudio help or website!

q Also works in Rmarkdown code chunks

For the uninitiated

44

Section
Headers
• Utilise code folding

features!

45

Section
Headers
• Utilise code folding

features!

q Can be helpful to navigate using the menu on the right side or at the bottom

46

Library
declarations:
What NOT to
do
Why?

q library or requirement statements should be avoided within the code

47

Library
declarations:
What NOT to
do
Why?

• Packages are basic
requirements; should be
visible at the top

• You might not have
something available, and
only realise after 2 hours (or
2 days!) of execution of the
code that came before it.

48

Library
declarations:
Better

49

Library
declarations:
Better

50

Library
declarations :
good

Library declarations are best at the top of the code within a separate section fold
of their own

Make sure to remove any
package calls that you are not
using in the code

51

Version Control
qCritical in industry

q Almost nobody practices it in academia
qunless they develop software that is deployed for someone outside their group

qCan be VERY useful for the development of your analysis
q– since you will tend to change things here and there in your scripts and then forget about it and then

wonder what your last working version was.

qSeveral ways of practicing version control
q Version Control Software
q Separate File Names
q Within Code Change Logs (+ Documentation)

52

Version Control - Using Version Control
Software (GIT or SVN)

53

Version Control - Using Version Control
Software (GIT or SVN)

54

Version Control - Using Version Control
Software (GIT or SVN)

55

Version Control - Using Version Control
Software (GIT or SVN)
q Saved code history; revert to any version

q Branch your project; try a different analysis

q Choose level of technicality; can function minimally with basic commands

q Sync across devices

q Great for collaboration
q Easy to share code
q Easy to share changes after sharing preliminary

ADVANTAGES

56

Version Control - Using Version Control
Software (GIT or SVN)
q Requires initial investment of time and effort

q Bad if you forget to push and/or commit changes
q– only to remember it later when you don’t remember what, why or how of the changes you made

q Useless, unless good, informative change messages used

q Ever expanding repository

DISADVANTAGES

57

Version Control – Separate File Names
q Use date before the file name (or at the end, before the file extension) to mark the latest
version of your file
q Most helpful date format: YYYYMMDD or YYMMDD (222200611 or 220611)

q Important change script header log to document change

q Can be used in combination with the next way of version control

q Older versions can be deleted, once scripting is finalized.

58

Version Control – Separate File Names
q No learning curve; you can start doing it straightaway

q Maintain history of previous changes

q Easy to revert to a previous version by simply picking a previous file

q No code syncing

Advantages

59

Version Control – Separate File Names
q Not good for collaboration

q Hard to see which version has what changes; you have to open each file

q Let’s say you are coding on a Wednesday. You don’t like changes you made on Tuesday and so
you went back to the Monday version. It is hard to keep track without opening individual files
and checking that the Wednesday version is not a continuation of Tuesday but of Monday.

q Disk storage size can keep on increasing, with every new file

q Important to remember to include change in header!

q Tedious to compare changes across versions

q Accidental saves of old file with new changes are likely

Disadvantages

60

Version Control - Within Code Change
Logs (+ Documentation)

Below the script header, there is a section called the Change
Log. All of the different versions of the code are logged there

The corresponding changes are marked in the main code with
comment lines

61

Version Control - Within Code Change
Logs (+ Documentation)
q No initial investment of time and effort to set it up and understand the basic commands and
concepts

q No multiple files needed

q This does not require anything outside of your code to maintain the versions

q No conflicts with other files

q You see all your changes and versions in the same file.

q Easy to see what changes happened when.

q Commented out pieces of old code can be deleted once code is finalised (or a new final
version can be made without the change log or changes at the end)

ADVANTAGES

62

Version Control - Within Code Change
Logs (+ Documentation)
q Not an elegant solution; obsolete – people with more software experience can resist change
logs

q Difficult to share changes to your code

q Falls midway between the other two options for ease in collaboration

DISADVANTAGES

63

Commenting
q Appropriate and thorough commenting is imperative. It helps with:
q Readability of the code
q Sharing; others can understand and verify steps easily
q Revisiting your code even after years
q Making changes and adjustment of code

q Advice on commenting ranges from commenting on every line to commenting as less as possible,
while maintaining readability

q Comments should establish balance between under- and over-explaining

q Generally recommended to answer “why” question, rather than “what”

q Should be helpful beyond what the code is telling; otherwise it is just clutter

q Don’t leave all the heavy lifting to comments -> name variable and functions to be self-explanatory

64

Commenting: What NOT to do

Anyone who knows basic
R knows what’s
happening in those
lines!

Comments should be
helpful beyond what the
code is clearly saying

Define the purpose!

65

Commenting: What could be done
instead

66

Commenting: What NOT to do

67

Commenting: What NOT to do

68

Commenting: examples from the
Internet
function addSetEntry(set, value) {
/* Don't return `set.add` because it's not chainable in IE 11. */
set.add(value);
return set;
}

/* don't use the global isFinite() because it returns true for null values*/
Number.isFinite(value)

Note that these are not examples from
R itself

69

Naming
Conventions
Things to avoid:

- Inconsistency in naming

- Names that do not reveal
exact purpose of
variable/function/file

- Cryptic abbreviations

70

Naming
Conventions
Things to avoid:

- Inconsistency in naming

- Names that do not reveal
exact purpose of
variable/function/file

- Cryptic abbreviations

71

Naming
Conventions
Things to avoid:

- Inconsistency in naming

- Names that do not reveal
exact purpose of
variable/function/file

- Cryptic abbreviations

72

Naming
Conventions
Things to avoid:

- Inconsistency in naming

- Names that do not reveal
exact purpose of
variable/function/file

- Cryptic abbreviations

73

Naming
Conventions

qImportant for readability, reusability, modularity of the code

qThe domain of R is very inconsistent when it comes to naming conventions (read:
Rasmus Bååth, 2012)

q Varied styles across companies

q Internal packages have different styles from each other

q Google’s advice radically differs from R internal packages

74

Naming Conventions
q Case based
q alllowercase
q lowerCamelCase
q UpperCamelCase

q Separator based
q period.separated
q underscore_separated

q Variables are nouns. e.g.:
q subjectNumber
q meanRTPlot
q allDataFilePath

q Functions are verbs. e.g.:
qretrieveData (& not dataRetriever)
qcalcFourierTransform

q Names should be self-explanatory

q Balance between explaining and
being concise
q Modularity helps with that

q Possible to choose a different
style according to purpose
qVariables - loweCamelCase
q Functions – period.separated
q File Names – underscore_separated

Good variable and function names reduce need for comments and improve readability
and comprehension of the code

75

Naming Conventions
q Make your choice according to your purpose
q Are you coding individually?
q Or in a team?
q Are you coding for an individual project
q Or are you developing an R extension or package?

76

Naming Conventions
q Coding individually for an individual project
q Consistency
q Choose freely but maintain choice across projects

q Coding individually for a package or extension
q Choice should be driven by conventions in existing packages
q Rasmus Baath 2012 is a good source for this; You can also do your own analysis like he does

qCoding in a team
q Choice driven by what everyone is comfortable with and can maintain

77

Naming Conventions
q For other languages
q R is quite a recent language and data types of variables are transformable.
q For some other languages/softwares e.g. Neurobs Presentation, Java, C++

q data types are fixed
q Need to be declared before being called
q Difference between variable and constants
q In such cases it is a good idea to denote the datatype in the variable name. e.g.:

q ivSubjectNumber -> i shows its an integer, v shows it’s a variable
q scTaskOne -> s shows it’s a string, c shows it’s a constant

q Declarations should be made separately (like library and parameter declarations)

78

Naming Conventions Comparison

What not to do How it can be improved

79

Naming Conventions Comparison

What not to do How it can be improved

80

Special Note: File Naming Conventions
q Avoid special characters or spaces in file names

q Stick to letters, numbers and underscore

Example source:
https://style.tidyverse.org/files.html#nam
es

81

https://style.tidyverse.org/files.html
https://style.tidyverse.org/files.html

Avoid hard
coding; Use
Parameters
What NOT to do

- In RStudio, blue usually
reflects hard-coded values

82

Avoid hard
coding; Use
Parameters
What NOT to do

- In RStudio, blue usually
reflects hard-coded values

83

Avoid hard
coding; Use
Parameters
How it can be better:

q Define parameters on top
(Note that these can use
constant identifier to remind
yourself to not change them)

Aside: Note use of both
period.separated and
loweCamelCase convention ->
this is a special scenario where I
merged them for clarity.

(Only good if followed
consistently!)

“c.” prefix is meant to reflect to the coder that they are
parameters or constants that shouldn’t be changed within the
rest of the code 84

Avoid hard
coding; Use
Parameters
How it can be better:

q Use defined parameters in
code

85

Avoid hard coding; Use Parameters

What not to do How it can be improved

86

Avoid hard coding; Use Parameters

What not to do How it can be improved

87

Reduce visual chaos:Break up code using
separators and code folding

88

Reduce visual chaos: Break up code
using whitespaces and indenting

89

Reduce visual chaos: Reduce commenting &
group lines aligned to same purpose

90

Modularity & User-Defined Functions
q Function creation helps with:
q Readability

qBreak code chunks that do different things
q Turn into function instead of sections
q Informative names make it easy to understand

Example source:
https://style.tidyverse.org/files.html#nam
es

91

https://style.tidyverse.org/files.html
https://style.tidyverse.org/files.html

Modularity & User-Defined Functions
q Function creation helps with:
q Readability

qBreak code chunks that do different things
q Turn into function instead of sections
q Informative names make it easy to understand

q Simplification

Example source:
https://style.tidyverse.org/files.html#nam
es

92

https://style.tidyverse.org/files.html
https://style.tidyverse.org/files.html

Modularity & User-Defined Functions
q Function creation helps with:
q Readability

qBreak code chunks that do different things
q Turn into function instead of sections
q Informative names make it easy to understand

q Simplification
q Reusability

Example source:
https://style.tidyverse.org/files.html#nam
es

93

https://style.tidyverse.org/files.html
https://style.tidyverse.org/files.html

Modularity & User-Defined Functions
q Function creation helps with:
q Readability

qBreak code chunks that do different things
q Turn into function instead of sections
q Informative names make it easy to understand

q Simplification
q Reusability
q Debugging

Example source:
https://style.tidyverse.org/files.html#nam
es

94

https://style.tidyverse.org/files.html
https://style.tidyverse.org/files.html

Modularity & User-Defined Functions
q Another way is to have a file with all user-defined functions and then source that file

95

Bonus mention: Pipe Functions &
goodpractice
q magrittr package

q tidyverse or dplyr frequently used

q goodpractice
Example Source:
https://www.datacamp.com/commu
nity/tutorials/pipe-r-tutorial

96

https://www.datacamp.com/community/tutorials/pipe-r-tutorial
https://www.datacamp.com/community/tutorials/pipe-r-tutorial

Thank you!
DO PEER REVIEWS!

97

